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Velocity moments have been calculated for the rapid distortion of axisymmetric 
turbulence in a uniform mean shear. The moments are compared with data on steady 
pipe flows and two-dimensional channel flows, and the turbulence structure of these 
flows is summarized in terms of effective distortion strain. The centre-line structure 
is taken to be characteristic of the undistorted state which from the data is more 
nearly axisymmetric rather than isotropic. A closer comparison is found than that 
by Townsend (1970), and in particular the differences in stress ratios r/p? 
found between different experiments can be accounted for with the hypothesis of 
initially axisymmetric turbulence. Profiles for the effective strain are derived from 
the experiments and are shown to have the same form and to indicate the existence 
of a relaxation timescale for the large eddies, comparable to the energy decay 
timescale. An equation for the effective distortion strain is formulated that can be 
incorporated into a turbulence model. 

1. Introduction 
Over the last decade there has been an intensified interest in developing models 

for turbulent shear flows based on moment-transport equations. These models are 
more sophisticated than earlier methods such as the use of an eddy viscosity and 
provide greater flexibility and accuracy. The basic approach as set out by Launder, 
Reece & Rodi (1975) is to assume that the turbulence is locally homogeneous and 
that the various terms in the moment equations may be represented ~ by tensorial 
relations in the instantaneous, local values for the velocity moments uzuj and the 
turbulence dissipation E .  The methods for prescribing these tensorial relations are 
reviewed by Lumley (1978). This approach has been quite successful in estimating 
equilibrium flows where the turbulence has sufficient time compared with changes 
in the mean flow to maintain an asymptotic equilibrium structure. However, in 
rapidly accelerating flows or unsteady shear flows it is not obvious that the 
assumption of a local time dependence is still suitable, and it may be necessary to 
consider the history of the turbulence structure. 

An alternative approach that does not assume a local time dependence is to use 
the results of rapid-distortion theory for turbulence in a uniform shear flow. The 
formal assumption of rapid distortion is that  the distortion by the mean shear is much 
stronger than the fluctuating strain rates of the larger eddies. I n  particular, the 
inertial transfer of energy to smaller scales is weak. For rapidly evolving flows where 
significant distortions occur on a timescale short compared with the timescale for the 
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energy decay of the larger eddies, the use of rapid-disbortion theory can be formally 
justified for short time intervals. 

Townsend (1970, 1976) has further shown that the structure of turbulence in 
homogeneous shear flows and in simple shear flows such as wakes, channel flows, and 
boundary layers is also fairly well described by rapid-distortion theory, even though 
the condition of a rapid distortion is not satisfied. I n  particular, he has shown that 
two-point velocity correlations and the ratios of the velocity moments have essentially 
the correct form and can be characterized by an effective value of the distortion strain 
parameter. The development of the turbulence structure a t  a particular point in the 
flow may then be associated with a particular distortion strain, and in an equilibrium 
flow this strain will have some asymptotic value. Townsend (1980) has followed up 
this approach in studying the behaviour of a distorted wake and the flow in a curved 
mixing layer. The shear flows in these cases were assumed to have some equilibrium 
strain before entering the contraction or curved flow region, where they were then 
subjected to additional distortion. I n  both cases rapid distortion gave good estimates 
of the ratio of Reynolds shear stress 7 to turbulent kinetic energy ip?. The curved 
mixing layer has also been investigated by Gibson & Rodi (1981) using a moment- 
transport equation model. Their results also compared favourably with the experi- 
ments of Castro & Bradshaw (1976) in this example. 

As pointed out by Townsend (1980), rapid-distorbion theory in itself does not 
provide a practical turbulence model. The theory is based on the linearization of the 
velocity-fluctuation equations and the neglect of nonlinear inertial processes of the 
turbulence, important, in particular to  the decay of the large eddies. Further, an 
arbitrary velocity scale is introduced by this linear theory. To formulate a ~- useful 
model the results of rapid distortion must be limited to specifying stress ratios u i u i / y 2 ,  
and separate equations must be given to  specify the turbulent kinetic energy and the 
effective distortion strain of the turbulence. A proposal along these lines was made 
by Mathieu (1971), modifying the model of Bradshaw, Ferriss & Atwell (1967), 
Bradshaw’s method assumed that the stress ratio ~ / p g  had a uniform, constant value 
of typically 0.15, and thcn used a turbulent-energy equation to determine turbulent 
kinetic energy and hence shear stress. Mathieu proposed instead that the stress ratio 
be estimated in terms of the net strain distortion by the mean shear following a 
mean-flow pathline. The turbulence was assumed to be either initially undistorted, 
as in entrainment of free-stream turbulence, or else assigned some appropriate initial 
strain. A transport equation for this stress ratio was formulated and a relation for 
the stress ratio to distortion strain obtained empirically from the data of Champagne, 
Harris & Corrsin (1970). The details of this model and its applications are given by 
Jeandel, Brison & Mathieu (1978). 

The purpose of this paper is to  re-examine the description of some equilibrium shear 
flows in terms of the results of rapid-distortion theory and to quantify the effective 
distortion strain parameter. In  93, data from some channel-flow and pipe-flow 
experiments will be examined and profiles of effective strain derived. These will then 
be used to formulate a strain equation linking the two limiting cases of rapid 
distortion and equilibrium shear structure. The results of rapid distortion are usually 
derived for initially isotropic turbulence for simplicity and on the basis that  the 
distorted structure will not be sensitive to the initial spectrum. This is not the case 
in fact, and in making comparisons with shear flows a more general hypothesis is 
needed. Instead i t  will be assumed here that the undistorted turbulence is initially 
axisymmetric and results for the shear distortion of initially axisymmetric turbulence 
are presented in $ 2 .  
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2. Rapid distortion of axisymmetric turbulence by a uniform shear 
The assumptions and applications for rapid distortion theory in general have been 

reviewed by Hunt (1978). The standard formulation for shear distortion is to suppose 
that a field of initially homogeneous and isotropic turbulence is suddenly subjected 
to a strong uniform mean shearing flow whose mean strain rate is much greater than 
the typical strain rate of the larger, more energetic eddies. The characteristics of these 
larger energetic eddies, as opposed to the less energetic dissipative motions, are then 
determined from considering the effect of the mean shear distortion. The nonlinear 
inertial processes such as energy transfer to smaller scales are neglected in comparison 
with the effects of mean shear. This assumption is valid for time intervals shorter 
than the timescale for energy decay. For a mean shear flow 

u = ( P ( t ) X , >  0. 01, (2.1) 

and turbulence characterized by a typical initial r.m.s. velocity scale uo and integral 
lengthscale Lo, these assumptions require that the ratio uo//3Lo be small. With these 
assumptions the equations for fluctuating momentum may be linearized and the 
resulting problem solved in terms of Fourier components of the velocity fluctuations, 
as given by Moffatt (1967) and Townsend (1970). These solutions are then combined 
to obtain the spectrum tensor and velocity correlations. An alternative approach is 
to form linearized equations for the two-point velocity correlations and to  solve 
directly for the spectrum tensor, neglecting third-order and higher moments. This 
latter approach has been adopted by Pearson (1959), Deissler (1961, 1970), Fox 
(1964), Loiseau (1973) and Courseau (1974). The works of Deissler and of Pearson 
were based on a low-Reynolds-number assumption neglecting nonlinear processes 
compared with viscous effects rather than a rapid distortion, thus allowing them to 
consider long-time-interval limits, although the mathematical problems are equiva- 
lent. The approach of Townsend (1970) is followed here, and the results are 
summarized in the appendix. I n  addition to the assumption of rapid distortion the 
effects of viscosity v are neglected, assuming that the direct effect of viscosity on the 
more energetic eddies is small compared with the effects of mean distortion, so that 
the ratio /3L,2/v is large. 

The rapid-distortion approximation relates the general two-point time velocity 
correlation ui(x, t )  u, (x+r, t + s )  to the spectrum tensor cDij(m) of the initial undis- 
torted homogeneous turbulence as 

UJX, t )  uj(x+r, t+s )  = d3mAip(m,a(t))Ajp(m, a( t+s ) )  J 
x @p,(m)exp{i[m. r + m,(x,a(t) -x,a(t+s)--r,a(t+ s)]}. (2.2) 

The distortion matrix A is defined in the appendix, and for no distortion it reduces 
to the identity matrix. The distortion strain parameter a(t)  characterizes the effect 
of the mean shear on the turbulence structure and is defined by 

a(t)  = /3(t’)dt’. s:, (2.3) 

Once an initial spectrum is specified, correlations and velocity moments may be 
evaluated from (2.2). The general two-point, two-time correlation is not homogeneous, 
however, even if the initial turbulence is, as may be seen from ( 2 . 2 ) .  This is an effect 
of the differential mean-flow advection. The term x,(a(t) -a(t+ s)) is the streamwise 
displacement produced by the mean flow between the two times t and t+s. In  a 
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coordinate system moving with the mean shear flow the statistics do remain 
homogeneous. The single-time correlations for s = 0 and the velocity moments ui uj(t) 
will remain uniform. 

The initial spectrum tensor Oij is chosen here to be axisymmetric rather than 
isotropic, as assumed by most previous authors. The exception to this is the work 
of Deissler (1975), who sought a closer comparison between rapid shear distortion and 
the experimental observations of Champagne et al. (1970). He allowed for a 
complicated form of the initial spec,trum to match upstream conditions. By doing 
this he was able to extend the range over which theory and experiment agreed, but 
he did not investigate the results in a general context. The distortion of axisymmetric 
turbulence by a pure straining flow has been studied by Sreenivasan & Narasimha 
(1978). With e as unit vector in the preferred direction, the most general form of the 
spectrum tensor satisfying symmetry and continuity conditions is (Batchelor 1953) 

__ 

Qii(m) = I i j  Bl(m,  m . e )  + H i j  B2(,m, m . e), (2 .4 )  

(mkek)2 mke,(eimi+ejmi) 
m2 Sf, - H . .  = e . e . + -  

$3 3 m2 

For isotropic turbulence B, is zero and B, is a function of m only, related to the usual 

E(m) Bl(m) = - 
4nm2’ 

energy spectrum function by 

There is a wide variety of ways of prescribing the functions B ,  and B2, which have 
been enumerated by Herring (1974). The simplest assumption will be made here, 
namely that B, and B, are functions of m only and independent of m . e ,  which 
corresponds to Sreenivasan’s ansatz I. The physical meaning of this assumption will 
be discussed shortly. The detailed forms of B, and B ,  are not important to the results 
presented here since the velocity moments depend only on 

m2Bn(m)dm (n = 1 ,  2 ) .  

Taking the x ,  axis as the preferred direction, the velocity moments of the undistorted 
axisymmetric turbulence are 

(2.9) 

(2.10) 

with zero shear stresses. This may be rewritten by defining the initial value of $ as 
the reference a:, and the ratio of initial moments 

(2 .11 )  

(2 .12 ) ,  (2.13) 
2 - so that 

B - - - I ,  B 2 = 2  
l - S  

This form of axisymmetric turbulence is the simplest form allowing an increase in 
while producing minimum change in the spatial the component over $ and 
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structure, since continuity conditions do not allow a simple rescaling of the spectral 
components. Briefly, i t  may be shown that introducing B2(m) raises the mean-square 
vorticity in the x 2  and x3 directions over that  in the x1 direction. The return flow for 
u2 motions is primarily then in the x1 direction rather than being equally in the x1 
and x 3  directions, as may be seen by considering the integral lengthscales. Similarly 
u3 return flow is primarily in the x1 direction. This is consistent with an increase in 
eddy motions in planes with normals perpendicular to the axis of symmetry. If the 
integral lengthscales Llf)  are defined by 

- 
where j(n) is a unit vector of the xn co-ordinate axis, then for this axisymmetric 
spectrum the integral scales I&), hi:), Lit) are still equal as for isotropic turbulence, 
and L$:), L# are still $hi;). For the special case of B2(m) proportional to B,(m), the 
scales L!& and L!&) though are 

(2.15) 

(2.16) 

indicating a relative increase in eddying motions and return flow in the Ozlx2 plane. 
Similar results apply for the scales Lg).  It is unrealistic to consider arbitrary values 
of S. The spectrum tensor given by (2.4) must correspond to a non-negative 
Hermitian form for i t  to be realiable and this restricts B, to  being a non-negative 
function. So necessarily S has an upper value of 2. Results will be given for S in the 
range 1 < S < 2. 

2.1. Velocity moments 

Values for the velocity moments uiuj have been computed from (2.2) using the above 
spectrum for initially axisymmetric turbulence. The results are given in figures 1 and 
2 as functions of the distortion strain a: and for various values of initial anisotropy 
8. The velocity moments have been scaled by the corresponding value of ?(a:) so as 
to eliminate the arbitrary energy level and to show the relative contribution of each 
of the three velocity components to the total turbulent kinetic energy. The results 
show that shear distortion leads to a distribution of energy with $ > u: > ug 
essentially. The effect of axial symmetry in the initial conditions is to reduce the 
relative strength of the shear stress ratio -ulu3/q2 and to raise the relative level of 
ug a t  the expense of 3. The fraction of energy in the u3 component is also reduced 
somewhat by the effect of initial conditions. Figure 3 shows further ratios of the 
Reynolds shear stress. I n  particular the initial anisotropy S reduces the maximum 
value of r/pu;ui from 0.74 for initially isotropic turbulence to 0.42 for X = 2, again 
reflecting the lower level of Reynolds shear stress for this form of initially axisymmetric 
turbulence. 

__ 

~- 

~- 

- 

For small strains the velocity moments, without scaling, are 

- -  
(2.17) 

(2.18) 
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FIGURE 1. Stress ratios calculated from rapid-distortion theory for initially axisymmetric turbu- _ _  
lence: -, $ / q 2 ;  ---- , -u,ua/q2. Initial turbulence: I, S = 1 ; 11, 1.5; 111, 2.0, where S = uT/ui 
a t  zero strain. = G. 

_ _  -- 

Strain a! 
- 

FIGURE 2. Stress ratios calculated from rapid-distortion theory: -, u:/?; ---- . 
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Strain LY 

FIGURE 3. Reynolds-stress ratios calculated from rapid-distortion theory : -, 7/p?; ----, 

7lpu;u;. Initial turbulence: I, S = 1 ;  11, 1.5; 111, 2.  

(2 .19)  

(2 .30)  

Further insight into the production and distribution of energy may be obtained by 
examining the pressure-strain-rate correlations. 

2.2. Pressure-strain-rate correlations 

The rapid-distortion problem may be written in terms of a set of moment transport 
equations with nonlinear effects, viscosity, and energy decay neglected : 

(2 .21)  

(2 .22)  

(2 .23)  

(2.24) 
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FIGURE 4. Pressure-strain rate correlations calculated from rapid distortion theory : -, rI1/@; 
_- -_  , and comparison with corresponding estimates from LRR model for initially 
isotropic turbulence. Initial turbulence: I, S = 1 ;  111, 2. Values for S = 1.5 were intermediate 
between curves I and 111. 

The pressure-strain-rate tensor vij is defined to be 

(2.25) 

and may be calculated for the rapid-distortion problem from the results given in the 
appendix and from the chosen form of the initial spectrum tensor. The fluctuating 
pressure and hence the pressure-strain-rate correlations are both directly proportional 
to the mean shear P(t ) .  The correlations vij have been scaled by P(t)g and are shown 
in figures 4 and 5. As for the velocity moments, the details of B, and B, are not 
important. The integral (A 16) for uij in the appendix depends on m only through 
the initial spectrum tensor mij and for the particular choice of initial axisymmetric 
turbulence made here this reduces to a dependence only on B, and B,. 

Without the effect of pressure-strain-rate terms, (2.21)-(2.23) show that turbulent- 
energy production would be solely concentrated in the $ component. The pressure- 
strain-rate interactions immediately on application of the strain give a net transfer 
of energy between the velocity components. Their net effect is zero, i.e. the sum of 
u,,, uz2 and u33 is zero for incompressible flows. The values plotted in figures 4 and 
5 show that ull and u33 are negative while v2, is positive, indicating that energy is 
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FIGURE 5.  Pressure-strain-rate conditions calculated from rapid-distortion theory : -, uzz/@; 
_ _ _ _ _  , u,,/aF. See caption to figure 4. 

transferred from both u1 and u3 motions to the transverse direction u2. This accounts 
for the large reduction in ui/q2 by the shear distortion. A positive shear stress is 
generated by the mean shear, but its magnitude is limited by the effects of u13. 
Further, from (2.24) the value of the shear stress is determined by the level o f 2  rather 
than $, For initially axisymmetric turbulence 2 is lower and u13 larger, both effects 
tending to reduce the level of the Reynolds shear stress. The overall effect of initial 
axial symmetry is to raise the relative magnitude of all the components of the 
pressure-strain-rate correlation and so accentuate their influence. For small values 
of the distortion strain a(t) the unsealed non-zero components of uij are 

_ _  

B,, =p(t)$(a=O) -&a 1+- +&a3 64-- +O(a5) , [ ( 3 ( 3 I (2.26) 

(2.29) 

The pressure-strain-rate correlations play an important role in moment-transport- 
equation models of turbulence, and as mentioned earlier much effort has gone into 
approximating them in terms of instantaneous values of the velocity moments and 
turbulence dissipation rate. When nonlinear processes are included and the full 
equations of motion considered, the pressure has two components : one dependent on 
the fluctuating values of uiul and the other linear in the mean shear. The pressure- 
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strain-rate tensor then has two corresponding parts : al?) representing nonlinear 
effects, and aif) containing the pressure component proportional to the mean shear. 
The nonlinear part is identified with a tendency for the turbulence to return to 
isotropy, and is usually approximated by Rotta’s (1951) hypothesis : 

(2.30) 

in the notation of Launder et al. (1975). The linear part referred to as the rapid term 
by Lumley (1978) is approximated by a tensor equation linear in the mean shear and 
velocity moments. The usual assumption is that ,  a t  least for weakly distorted 
turbulence, the tensor equation is isotropic. For uniform shear flow this leads to the 
approximations ~ 

--(L) r11 = - - 1 ~  11 1 u 3 p ( S c Z - 6 ) ,  (2.31) 

ap = -1- l l U l U 3  p(3c2 + ‘), (2.32) 
- 

(2.33) 

r$i) = &3[G(25c2-9) +g(l- 15cz)+G(41 - l0c2)], (2.34) 

again in the notation of Launder et al. (1975). 
In  the limit of rapid distortion these approximate estimates of uip) can be compared ~ 

with the results calculated directly from rapid-distortion theory. The values of ui uj 
in (2.31)-(2.34) are taken from rapid-distortion theory on the basis of initially 
isotropic turbulence (8 = 1 )  and the value of cz is taken to be 0.4. The results are 
included in figures 4 and 5. For zero strain when the turbulence is isotropic the 
estimates of aljL) do agree with the rapid-distortion values of at*, independently of 
the choice of cz. However, once the turbulence is distorted by any amount, aijL) does 
not provide a good estimate of aii. The component a$$) is of the opposite sign, 
corresponding to a transfer of energy to u3, and the other components differ 
noticeably. A value of c2 in excess of 0.8 would be required to make a$$) negative 
and of the same sign as C T ~ ~ .  

Gence, Angel & Mathieu (1978) compared rapid-distortion estimates for initially 
isotropic turbulence of pressure-strain-rate correlations with the models used in 
moment-transport equations. They found that better agreement between a&) and atj 
could be obtained by choosing cz = 1.53 for weak distortions or c2 = 1.13 as a general 
compromise value.? They based their results on both shear distortion and distortion 
in pure straining flows. They also proposed a modified formula for a!?) to remove the 
discrepancies. 

For the more general case of initially axisymmetric turbulence there is really no 
suitable value of cz that  will match the estimates of rl:) to the results of rapid 
distortion. This may be seen in particular by comparing these estimates (2.31)-(2.34) 
with the expansions of atj for small distortion strains given by (2.26)-(2.29) and the 
velocity-moment expansions (2.17)-(2.20). At zero distortion strain even as 
estimated by (2.34) fails to  match the correct value in general unless c2 is set to equal 
0.8. If this value of c2 is adopted then a$$) is identically zero. 

While it is reasonable to suppose that the moments uiuj and the turbulent-energy 
dissipation E characterize the turbulence and in particular the pressure-strain-rate 
correlations, there is no a priori reason for this in principle, and certainly no special 
reason to expect a linear isotropic tensor equation. For initially isotropic turbulence 

~ 

t In Gence’s notation D = -h(2 +3c, ) ,  and values of D = - W 6  or -0.49 were suggested. 
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a t  zero strain the approximations for @) do match aij in the rapid distortion limit, 
but the tensor equation does not match rapid distortion in general, even for initially 
isotropic turbulence once the __ strains are O(1). The integral expressions (A 14) and 
(A 16) in the appendix for uiuj and aij show their distinct character and separate 
dependence on the initial spectrum tensor. Also the results depend on strain a,  i.e. 
the history of the mean shear, and not just instantaneous values. 

For equilibrium shear flows the two parts aif) and aij" are of similar magnitude, 
so that discrepancies in estimating one may be compensated by the other, with little 
overall difference. I n  an experiment it will be very difficult to determine the two parts 
separately. For a rapidly changing flow the differences in estimating the rapid part 
of the pressure-strain-rate correlation will be significant. 

2.3. Integral lengthscales 
The integral lengthscales defined by (2.14) have been evaluated for the distorted 
turbulence 

(2.35) 
- 
U ; L w  22 = [ 7 # 1  u2 (a = 0) (iW? (2.36) 

%L$i) = [$L$i)] (a = 0) (1  -$B:), (2.37) 

U: hi',' = [$hi:)] (a  = 0) (iB:), (2.38) 
gL$y = [$LC,~)](a=O)(i-$B:)(1+a2)1. (2.39) 

The coefficients Bf, B: are moments of the spectral functions B,(m) and B2(m). If 
B, and B, are assumed to be proportional then Bt  is to  equal Bi, as in the velocity 
moments, otherwise 

B:[$L!;)] (a  = 0) = 2n2 mBi(m)dm. (2.40) 

The results show that L!;) and increase while L$i) decreases because of the 
formation of a negative loop in the u2 space correlation. Similarly L&) rises and L!& 
decreases. These changes in lengthscales may be understood more easily by considering 
the changes in vorticity components and the typical pattern of eddy motions after 
distortion. 

The equation for vorticity fluctuations corresponding to the rapid-distortion 
approximation made here is 

- 

R 

(2.41) 

The terms on the right-hand side represent respectively the effects of mean vorticity 
stretching and the rotation of fluctuating vorticity by the mean shear. As described 
by Hunt (1978), an w3 component of vorticity generated by mean vorticity stretching 
will be rotated by the mean flow, giving a w1 component and a positive Reynolds shear 
stress. The hairpin vortex is a typical resulting eddy structure, similar to that 
proposed by Theodorsen (1952). The decreases in Lii) and L&) are consistent with 
an increase in w1 and w3 vorticity levels and with greater return flow for u, motions 
in the 5,  direction. The rises in LC,;), Li;)), and Lit) are consistent' with a relative 
suppression of w2 vorticity and reduced return flow for u3 in the x1 direction. The effect 
of initial axial symmetry is to  reduce L$\) and L!$ further and to limit the increase 
of L& and Lg). The initially higher levels of w 2 ,  w3 vorticity for axisymmetric 
turbulence tend to raise the importance of w3 vorticity and counter the effects of 
distortion on the two other vorticity components. 
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FIGURE 6. Data from Laufer (1954) for flow in a pipe : observed mean shear and stress ratio. Effective 
strain CZ derived by comparison of stress ratio with rapid distortion for S = 1.10. Re = 500000. 

3. Comparisons with some simple shear flows 
The results of $2 were derived on the assumption of a rapid distortion of 

homogeneous turbulence. For steady equilibrium shear flows in pipes and channels 
this assumption is clearly not valid, and the ability of rapid-distortion theory to 
describe the structure of simple shear flows, a5 demonstrated by Townsend (19701, 
is to some extent surprising. However, rapid distortion will describe the initial 
development or establishment of turbulence structure in a shear flow, and nonlinear 
processes seem to tend to limit this development rather than radically alter the 
structure. In  a pipe or channel flow the mean shear will vanish a t  the centreline and 
increase towards the walls. If the turbulence is regarded as being approximately 
homogenous locally then the distortion strain a t  the centre should be zero, for a given 
time interval, and increase towards the wall. The stress ratio T / ~ G  calculated from 
rapid-distortion theory (figure 3, S = 1) as a function of increasing strain shows a close 
similarity with the same ratio as a function of distance from the centreline derived 
from the experimental results of Laufer (1954) for flow in a pipe (figure 6), and, 
further, both curves have approximately the same maximum values. This suggests 
the possibility of ascribing a distribution of effective distortion strain as a function 
of distance from the centreline based on the values of this stress ratio. This is the 
basis of the approach taken here. The developed turbulence structure is supposed 
to be similar to that locally of a truncated rapid distortion, stopped when the 
distortion strain has settled to a local equilibrium value that will be referred to as 
the equilibrium value of the effective distortion strain. Velocity moments will be 
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compared between rapid distortion and observational data to determine effective- 
distortion-strain values from ~ / p $  values and then to test the overall usefulness of 
the hypothesis. 

Before comparing the results of rapid distortion with pipe or channel flows an 
assumption of local homogeneity must be made so that the mean shear is assumed 
to be locally uniform on the scale of the most energetic turbulent eddies, an 
assumption also invoked by moment-transport-equation models. The validity of this 
type of assumption has been questioned though by Corrsin (1957). Further, for 
equilibrium shear flows the non-linear processes previously neglected should be 
considered for their possible effects. Briefly some of these effects will include 
self-advection of the turbulence, random distortion of turbulent eddies leading to 
energy transfer from large scales to small scales and breakdown of individual eddies, 
and the additional contribution of random pressure fluctuations. Turbulent self- 
advection is the essential feature of turbulent diffusion, and in inhomogeneous flows 
will lead to diffusion of turbulent kinetic energy. It will also lead to  the migration 
of turbulent eddies from one part of the flow to another so that eddies experience 
differing mean shears during their lifetime. At a fixed point in the flow eddies with 
different strain histories would be observed as they migrate from neighbouring 
regions. The net effect may be regarded as producing a transport of effective strain. 

The transfer of energy from large scales to  smaller scales is the principal mechanism 
for energy loss since the direct effect of viscosity on the larger scales will in general 
be small. The experiments of Comte-Bellot & Corrsin (1966) on the decay of 
homogeneous isotropic turbulence, for example, show that the energy decays on a 
timescale comparable to the integral timescale 

where L is an integral lengthscale and 7 a constant. If the timescale TE is also taken 
to be a typical time before an eddy feature is broken down into smaller-scale motions, 
this will set a time limit for the interval for which the eddy will be distorted by the 
effect of mean shear. For a uniform shear an equation analogous to (3.1) will then 
apply to the effective strain, modifying the original form of ( 2 . 3 ) ,  

L 
T -  - 

The distortion timescale 

D-S(q2)t’  (3.4) 

where S is another constant. I n  the limit of a rapid distortion the above estimate for 
effective strain will revert to the usual definition of distortion strain (2.3), while in 
steady equilibrium shearing the effective strain will have a limit of TD d U , / a x , .  Finally 
there is the effect of the nonlinear pressure fluctuations that contribute to the 
pressure-strain-rate correlations #) discussed earlier (equation (2.30)). These will 
tend to reduce the anisotropy of the turbulence over and above the effect of a limited 
straining time. 

Some of the nonlinear effects may then be accounted for by specifying diffusion 
terms and decay timescales. No specific correction for pressure effects has been 
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Experiment 

Laufer (1954), pipe, 
( A l )  Re = 50000 

( A 2 )  Re = 500000 

Sabot & Comte-Bellot 
(1976), pipe 

Lawn (1971), pipe 

Laufer (1951), channel 

Comte-Bellot (1963), 
channel 
(El) Re = 57000 

(E2) Re = 120000 

(E3) Re = 230000 

Re = 135000 

Re = 90000 

RP = 61 600 

Ratio S max ( ~ / p $ )  max (7/pg) TD 

1.10 

1.10 

1.24 

1.55 

1.6 

1.66 

1.8 

2.2 

0.33 

031 

030 

0.25 

0 2 5  

019 

020 

0.165 

0.16 

0145 

- 

0.13 

- 

0.1 1 

0.12 

0.105 

TABLE 1. Centreline values of S and maximum observed stress ratios, with estimates of 
distortion timescale TD. Maximum mean velocity 17,; friction velocity u*; pipe radius a ;  
channel depth, centreline to wall, D 

included though. Conventionally, in moment-transport equations for very large 
Reynolds numbers, the decay of energy is specified as being equally divided among 
the three components; so for uniform shearing 

The use of rapid distortion to predict stress ratios is consistent with postulating a 
Rayleigh damping term - uiuj/TE in the velocity-moment, equations to replace the 
nonlinear pressure-strain-rate correlation and decay term, 

~ 

The stress ratios are then unaltered by the decay process. Equation (3.7) would also 
result from specifying f~iy) by (2.30) and setting c1 = 1.0. The value of c1 usually 
recommended is 1.8. So any tendency for equipartion of energy will be underestimated 
by rapid distortion theory. The preceding discussion illustrates how nonlinear 
inertial processes may be expected to limit the distortion effects of a mean shear. The 
distortion reaches an equilibrium with the structure characterized by a finite 
asymptotic value of effective distortion strain a,,,, based on comparison with the 
results of rapid-distortion theory, rather than an indefinitely increasing strain a,  as 
given by the usual definition (2.3). 

Data from several channel- and pipe-flow experiments have been analysed to 
evaluate the stress ratios r / p q  and r / p F  as functions of position. The values of 3 
and 9“ are taken from the measurements, while the shear stress is based on a linear 
profile appropriate to the core region of fully developed channel or pipe flow. The 
distribution of the ratio r / p q  was used to specify a profile of effective strain by 
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0.4 I 1 I I I 

1 I I I I I I .  
1 .o 1.2 1.4 1.6 1.8 2.0 

S 
~- ~- 

FIGURE 7 .  Calculated values of maxima of stress ratios -u luB /u~  and -uIu3 /q2  as functions of' 
strain, for fixed values of initial anisotropy. Symbols denote observed values of these maxima as 
listed in table 1 .  

comparison with the predicted results of rapid-distortion theory. This ratio was 
chosen as it showed greater variations than r /pF,  and because i t  had a definite 
maximum value, thus providing a reference point. Table 1 lists the experiments 
considered. A t  the centrelines of these flows the effective strain is zero by symmetry, 
eddies passing through the centreline experiencing on average equally positive and 
negative strains, and so the structure at the centreline shouId characterize the 
undistorted state of turbulence in the core region. In  practice the turbulence a t  the 
centreline of two-dimensional channel and pipe flows is not isotropic but more nearly 
axisymmetric, with $ being largest and the moments ul, u! nearly equal. The 
observations have been compared with results of $2,  taking into account this 
axisymmetric structure for the undistorted turbulence. The ratio S is defined now 
as the ratio of moments a t  the centreline: 

- _  

- _ -  
S = [2u;/(u;+u;)] (xs = 0).  (3.8) 

Examination of the experimental data shows that the maximum values of the 
profiles for the stress ratios r /p$ and r / p F  differ appreciably between experiments. 
The maxima of these ratios as functions of distance from the centreline are listed in 
table 1 and plotted in figure 7 against the corresponding value of S for each 
experiment. There is a clear trend for the stress ratio values to decrease with 
increasing S. I n  the same figure this trend is compared with the variations in 
maximum values with S predicted by the rapid-distortion results of $2. There is a 
close similarity, within experimental limits, of the observed trend and the theoretical 
curves, showing the ability of rapid distortion to give the correct values and 
indicating the importance of the parameter S. There is no clear-cut explanation for 
the observed variations in S. Examination of the experiments listed here and other 
experiments suggest though that S has a value of about 1.2 for pipe flows and about 
1.8 for channel flows. 

I n  figures 6 , 8  and 9 three different flows have been analysed for profiles of the stress 
ratio r/p$ and for profiles of the mean shear. Values of effective strain aeff have then 
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r 
a 
- 

FIGURE 8. Data from Lawn (1971) for flow in a pipe: observed mean shear and stress ratio. Effective 
strain a derived by comparison of stress ratio with rapid distort>ion for AS = 1.55. Re = 90000. 

I I I I I 

f I I I I I 
I 0.2 0.4 0.6 0.8 1 .O 

x3 

D 
- 

FIGURE 9. Data from Comte-Bellot (1963) for flow in a channel: observed mean shear and stress 
ratio. Effective strain a derived by comparison of stress ratio with rapid distortion for S = 1.8. 
Re = 120000. 
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I I I I I I I 
1 2 3 4 

a e f f  

~- 
FIGURE 10. Comparison of the observed stress ratios uiui/q2&om Laufer (1954) with rapid 
distortion (S = 1-1 )  based on values of effective strain. Ratio uf/q2: _ -  curve I from theory; 0, 
observed. Ratio ui/qz: curve 11 from theory; @., observed. Ratio ui/q2: curve I11 from theory; 0, 
observed. Ratio -u1,u3/q2: -.-.- , from theory; 0 ,  observed. 

_ -  
~- 

%ff 

~- 
FIGURE 11.  Comparison of the observed stress ratios uiuj/pz from Lawn (1971) with rapid distortion 

(S = 155) based on values of effective strain. Symbols as in figure 10. 
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been derived by comparing observations with rapid distortion so as to  match the 
stress ratio. The profiles of effective strain in all three cases are similar, varying 
roughly linearly over the core region from zero to 3-5 or 4. The mean-shear profile 
varies linearly over a central region, and the ratio of mean shear to effective strain 
in this region gives an estimate of the distortion timescale TD when diffusion of strain 
is neglected. The values of TD listed in table 1 are of similar magnitude, and also 
comparable to the interval between bursts in pipe flow observed by Sabot & 
Comte-Bellot (1976), and with the energy decay timescale TE for this region. The 
profiles of effective strain have then been used to compare the other moment ratios 
with rapid distortion estimates as given in figures 10 and 11.  The ratios are predicted 
approximately by the theory, but most obviously the difference between 2 and $ 
is overestimated, indicating the importance of a return-to-isotropy effect. 

Previous authors such as Deissler (1975) and Loiseau (1973) have compared 
rapid-distortion theory with the experiments on homogeneous shear flow by Cham- 
pagne et al. (1970), Harris, Graham & Corrsin (1977) and Mulhearn & Luxton (1975). 
The experiments were performed to obtain an asymptotic equilibrium structure for 
the turbulence in mean shear. The previous theoretical comparisons mentioned above 
assumed, however, that  this asymptotic structure would come from taking the limit 
of large distortion strain as defined by (2.3), rather than the distortion process being 
limited by a finite distortion timescale giving a finite effective distortion strain. The 
experimental data of Harris et al. (1977, figure 5) show clearly though that ?/p2L; 
is tending to an asymptotic limit consistent with the effective strain distortion a,,, 
reaching an upper limit. The most recent set of data of Tavoularis & Corrsin (1981) 
shows that 7 / p q  starts with a value of about 0 3 4  a t  r J h  = 4 and settles downstream 
to an asymptotic value of 0.27, while tends to 0.14. The ratios of velocity 
moments tend to level out a t  

in the present notation. This is consistent with initially isotropic turbulence being 
distorted to a finite strain of 3.5 or so, for which r/p? is 0.14, r / p q  is 0.26 and the 
ratios of velocity moments are 

(3.10) 

_ _  _ _ _  
As with the pipe and channel flows, the component ut/q2 is underestimated and ui/q2 
overestimated by rapid-distortion estimates. 

4. Conclusions 
The main conclusion is that  turbulent shear flows can be reasonably well described 

by rapid-distortion results in terms of an effective st,rain, which under normal 
conditions has an  upper value of about 3-5. The two limits of rapidly evolving flows 
and equilibrium flows are related through an effective-strain equation such as (3.3), 
of which the important feature is the relaxation timescale TD. The correspondence 
is by no means exact, but does provide a convenient way of characterizing the 
t>urbulence structure, a t  least to  a first approximation, and showing up those features 
that may be expected as a 'linear' response to the mean shear. It also provides a 
context for relating the observations of homogeneous shear-flow experiments to the 
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equilibrium structure of turbulent channel or pipe flow. It indicates that even in a 
fully developed flow there is a full range of turbulence structure going from the 
unstrained condition to the asymptotic upper value. 

For an inhomogeneous flow the effective-strain equation should be modified to 
allow for the transport of effective strain by the advection of turbulent eddies by the 
turbulence itself. Such a modification would be to specify a diffusion coefficient ED : 

A diffusion-of-strain equation was proposed by Townsend (1970), although without 
a relaxation term. This omission leads to unrealistically large values of effective strain. 

An effective-strain equation also provides the basis for a turbulence model for 
computing both steady and rapidly varying flows. The effective strain can be used 
to determine the stress ratio 7/p?, which in turn can be used to estimate turbulence 
production in an energy equation. The combination of energy equation, strain 
equation and niean-momentum equation provide a closed model that  will reproduce 
as much detail of the velocity moments as moment-transport equations, yet with 
fewer equations to solve. The model further does not assume a local time dependence 
and so is particularly suited to studying oscillating turbulent flows where a t  higher 
frequencies the oscillation period is of similar magnitude as the large-eddy timescale. 
The model has been applied to this problem by Hunt & Maxey (1980) and a 
subsequent paper to the present one will give a more complete study. 

The idea of a relaxation timescale for turbulence distortion and an equation for 
effective distortion strain such as (3.3) or (4.1) also have applications to  other types 
of flows such as uniform straining flow. In  experiments on uniform straining the 
condition of a true rapid distortion is rarely met, with the distortion process taking 
place over a time comparable to the energy decay timescales. A more appropriate 
comparison with rapid-distortion theory would be in terms of an effective strain. 

I wish to thank Dr J. C. R. Hunt for guidance and helpful discussion during the 
course of this work. The work was supported by the Science Research Council under 
the CASE Studentship scheme, in collaboration with the Central Electricity Research 
Laboratories, Leatherhead. I am grateful to  Professor Corrsin of The Johns Hopkins 
University for time to complete this project and support under the National Science 
Foundation, Atmospheric Sciences Program. 

Appendix 

in a uniform mean shear flow P( t )  x3atil are linearized: 
Under the assumptions of rapid distortion the equations for momentum fluctuations 

c?Ui dUui 1 dp 
- + + ( t ) x 3 - + u 3 P ( t ) 6 f l  = ---, 
at ax1 P 3% 

The instantaneous fluctuating velocity field ut(x,  t )  can be written as a Fourier 
integral (in the sense of generalized funct'ions) 

ui(x ,  t )  = jd3kai (k ,  t )  e i k . x ,  (A 3) 
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and substituted into the above equations. The fluctuating pressure p ( x ,  t )  similarly 
has a Fourier transform H(k, t )  which because of continuity satisfies 

2iPPkl a3 
k2 ’ 

n(k ,  t )  = 

p being the fluid density. Once pressure is eliminated there are three linear equations 
to solve for the ad terms. The solution is conveniently written in the form 

t )  = A,,(m(k, t ) ,  a@)) q m ( k ,  l ) ?  0) ; (A 5 )  

where the matrix A has components 

A,, = A,, = 0, 
m2 m2 A - -= 

33 - k2 m2 - 2am, m3 + a2m; ’ 

A,, = -( m2 -%p+!?%!) 
mf+mi m2 m2 ’ 

(A 6 c )  

A,, = A,, = A,, = A,, = 0. (A 6e) 

The functions P(m, a) and &(m, a) are 

a(m2 - 2m: + am,m,) 
m? a2 - 2am,m3 + m2’ 

Q =  

The vector m is the wavenumber in a frame of reference moving with mean shear 
flow, and is related to the wavenumber k in fixed coordinates by 

@ I >  m2. m3) = (k,, k,, k3+ k 1 4 ) .  (A 9) 
The turbulence distortion is characterized by the strain parameter 

which is determined by the time history of the mean shear. 
These results for the individual Fourier components are combined to give velocity 

correlations in terms of an initial spectrum tensor <D,. If at t = 0 the turbulence is 
homogeneous, the spectrum tensor 

<Dij(m) = ( 1 / 2 ~ r ) ~  Jui(x, 0) uj(x+r,O) e-im.r d3r (A 11)  

is formally related to  the Fourier modes by 

S(m + m’) <Ddj(m) = u,(m’, 0) uj(m, 0). 
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Similarly the pressure-strain-rate correlations can be evaluated from (A 4) : 

= jd3k jd3k‘ ([2 ik lP( t )  a3 (k ,  t ) / k 2 ]  [ik;at(k’, t )  +ik;aj(k’ ,  t ) ] )  e i x . ( k + k ’ )  (A 15) 

The terms again can be simplified using (A 5 )  and (A 12) 

The wavevectors m and k are related as in (A 9). 
I n  deriving the above results the fact was used that the matrix A is unaltered if 

m is replaced by -m. Furthermore, the matrix components Ajj(m, a )  depend only 
on the direction cosines of m and not on the magnitude m. This simplifies the 
evaluation, as generally the dependence on m can be separated and treated analy- 
tically, leaving the integration of (A 14) and (A 16) over spatial shells in wavenumber 
space to  be done numerically. Other results for second-order correlations are derived 
in a similar manner. 
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